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Brownian motion and polymer statistics on certain curved manifolds
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In this paper we have considered a Gaussian polymer chain of lenaghan intrinsic object enclosed on a
surface embedded in the Euclidean space. When the surfaces are theSphene D dimensions and the
cylinder, the cone and the curved torusRr, we have calculated analytically and numericallising the
diffusion equation and the path-integral approatiie probability distribution functiorG(R|R’;L) of the
end-to-end vectoR— R’ and the mean-square end-to-end distaf(@—R’)?) of the polymer chain. Our
findings are that the curvature of the surfaces inducee@metrical localization areaat short scalesl(
—0) the polymer idocally flat and the mean-square end-to-end distance is just the Gaussian_Vglue=
Kuhn length, independent of the metric properties of the surface; at large sdales:(), ((R— R’)?) tends to
a constant value in the sphere case, and it is linearfor the cylinder and reaches different constant values
(as a function of the geometry of the surfader the curved torus. In the case of the cone, contraction of the
chain is induced at all length scales by the presence of the vertex, as a function of the openingraagie 2
the end positiorR’ of the chain. Explicit crossover formulas are derived &R|R’;L) and((R—R’')?).
[S1063-651%98)05304-3

PACS numbsgps): 36.20.Ey, 05.20:y, 05.40:+j

[. INTRODUCTION spherical surface, while it is two-dimensional in the other
surfaces.

Statistics and topological characteristics of polymers em- Although due to the equivalence between the random-
bedded in curved interfaces are of significance in biologicaivalk problem and the statistics of an ideal Gaussian chain
problems related to the way polymers wrap around sphericd#] many results are already available from the theory of
and rodlike macromolecules and vesicles, and the role playe@rownian motion, the specific problems we address here
by geometry and topology in the dynamics of a biomoleculdh@ave not been answered yet.
captured on the membrane of a ddl]. These types of issues
arise in other area of physics as well: the quantum mechanics
of free particles in curved and multiply connected spaces
(e.g., see Ref[2]), the physics of vortex lines in type-l
superconductorg 3] and the rotational Brownian maotion. /

In realistic situations, excluded-volume interactions be-
tween polymer segments and fluctuations of curved inter-
faces need to be accounted for. Under these circumstances, @
only approximate analytical results can be generally obtained
via perturbation analysis, variational techniques, or renor-
malization group theory. Before embarking on such an ef-
fort, it is necessary to solve the problem of a free polymer
chain, characterized only by its connectivity, on a curved, 20
fixed surface.

In the present paper we derive, using a path-integral and
spectral representation, the probability distribution of the
end-to-end vectoG(R|R’;L) and the size—expressed by
the mean-square end-to-end distag@—R’)?) in the am-
bient space—of an idedhoninteractingg Gaussian polymer
lying on a curved manifold. /

The curved surfaces studied in this paper are $He?
sphere inD dimensiongFig. 1(A), for D= 3], the cylinder
[Fig. 1(B)], the circularcone[Fig. 1(C)], and thetorus[Fig. C D
1(D)] in R3. The geometrical parameters are shown in Fig. 1. ' '

The polymer is an intrinsicld — 1)-dimensional object in the FIG. 1. The geometrical data that characterize the sptere
the cylinder(B), the cong(C) and the torugD): a is the radius of
the sphere, of the cylinder, and of the circular cross section of the
*Also at The National Institute of Materials Physics, Bugtires torus;b is the radius of the axial circle of the torus;is the angle
Romania. of the cone at the vertex.

a
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In our calculations we have used the path-integral repre- | _
sentation [4,5] of the probability distribution function (E— EA)G(R|R':E)=5(D)(R—R'), (2.6
G(R|R’;L) of a Gaussian polymer chain and the diffusion
equation obeyed by this probability. As mentioned, no

excluded-volume or other types of interactions are accountewhich can be solved by an eigenfunction expansiorGof
for in this paper. followed by an inverse Laplace transform that eventually

yields theheat kernel
Il. FORMULATION

Let us consider ®-dimensional Gaussian polymer chain GRIR;L)=2 $.(R) ¢ (R)exa—E,L). (2.7
with N links of Kuhn lengthl and total length_= NI, with .
the first bead located &' and the last one &. The end-
to-end vectoR— R’ is distributed according to the following
probability distribution function, given as an explicit path

Here ¢, andE,, are obtained from the eigenvalue equation

integral[5]: |
gralls] ~ 5580, (R1=E,8,(R), 28
DN/2 o —g N1
’. _ I D
G(RIR";L)= hll[nw (277| 55) fo=R’ ].1;[1 d=r; with u some generalized index. In general, the probability
850 distribution G(R|R’;L) is not translational invariant. The

Nos=L mean-square end-to-end distanzan be calculated from

xe p[ o % (rj=r )2} 2.1
XA — 57z i—r-1)°], .

2losf= 1T deRdDR’(R—R’)ZG(RIR’;U
(R=R")?)=

whereD is the intrinsic dimension of the polymes#s is the Dis 4D o / .

change in the arc length along the chain, and; is the fd RA“R'G(RIR";L)

position vector of theth bead of the polymer chain. Note (2.9

that the distance on the surface is calculated as

(rj=ri-1?=09u,(Uj=uj_1)(vj—vj—1), whereu,v are the |t is to be noted that the calculated mean-square distance
intrinsic coordinates and the metric tengpy, is discretized represents the distance between the ends of the polymer mea-
in a symmetric form or using the midpoint rule.g., see sured by an outside observer, located in the ambient space,
Refs.[6,7]). In RP, the expressioii2.1) gives the Gaussian which is different from the geodesic separation measured

probability distribution along the surface.

D D/2 D
G(RIR";L)= (m) ex;{ _ E(R_R,)z}' 2.2 lll. CALCULATIONS AND RESULTS

Because of the known equivalenjeg8] between the dif-

The probabilityG(R|R’;L) obeys the diffusion equation  fusion equatior(2.3) and the Schidinger equation for a free
particle, we can readily obtain the polymer probability dis-
tribution G(R,R’;L) for the sphere and the cylinder cases,
(I—ﬁA)G(RW’:L):O, (2.9  from the corresponding probability amplitudes for a rigid

rotor in D dimensiong9] and for a 2-B free particle mov-

subject to the initial condition ing on the surface of a cylinder, respectively.

limG(R|R";L)= 6" (R—R"). (2.9 A. SphereSP~1in RP

L0 Let a be the radius of thed—1)-dimensional sphere
centered at the origin of the coordinate system. TRés) is

a vector of magnitude that measures the position of the
bead ats about the center of the sphere. The intrinsic dimen-
sion of the polymer iD—1. In spherical coordinates the
Laplace-Beltrami operatd2.5 becomeg7, Sec. 4.2.8

1
A= _aig”aj ) (25)

1

Vg A=—/[?, (3.1

When the polymer lies in a curved manifold, one needs tq
employ the Laplace-Beltrami operator given kg.g., see
Ref.[6])

whereg'! is the inverse of the metric tensgy; of the surface
and g=det(g;;). We remark thag;; is the induced metric
from the ambient embedding spade®(or R3).

One can obtain the solution of EqR.3 satisfying the
initial condition (2.4) by applying a Laplace transform with e m
respect td_ that gives the Green’s function equation L£°55(Q)=—-3(J+D—-2)Sj(Q). (3.2

where£? is theD-dimensional Legendre operator, satisfying
the eigenvalue equation
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The ST functions are the hyperspherical harmonics orthonor
mal and complete on the ur® ! spherd 10]:

f dQS'Jn(Q)SrJY:’(Q): 833 S

o0 M
JZZ Sh)S™(Q)=6DQ-0"), (3.3

where M= (2J+D-2)(J+D-3)!/JI(D—-2)! and Q is
the solid angle inD dimensions. Using Eq(3.2) and the
eigenvalue expansion(2.7), where ¢,—S;' and E,
—J(J+D-2), we readily find the probability distribution
function of a polymer chairfor, equivalently, of a random
walk) that starts aR’ and ends aR in N=L/I steps, on the
SP~1 sphere:

0 M
G(RIR";L)=—=—=> > Sl(Q)S[*(Q")
a J=0 m=1
LI JJ+D-2) s
X ex —ET (3.9

The probability found above is normalized properly to one
(JdPRG(R|R’;L)=1). In R® we recover the knowr11]
rotational diffusion result

©

1 |
GRIR'LI= 52 2 Yim(),Yin(Q)

X exp{

BecauseG(R|R’;L) is translationally invariant, the end-to-
end distance can be calculated as a conditional expectati
value by dropping the integration ov&' in Eq. (2.9). To
evaluate the remaining integral, we use the addition theorem
for hyperspherical harmonid4.0],

3.9

Yoo
432 '

M
mE:l ST(Q)ST*(Q)
_ 1 (2+D-2)

_ - (D-2)12
S, Db-2 &

(cosVrgr!), (3.6

whereSy = 27P2/T"(D/2) andC} are the Gegenbauer poly-
nomials of argument cogrg:. Writing (R—R’)?2
=2a’[1—cosW¥gg ] and inserting Eq(3.4) into Eq. (2.9),
we get

TN 1 2J+D 2
((R-R")%=2a% 1 —————Cc0osVgp:
XC(JD_Z)/Z(COS\I'RR,)
LI JJ+D-2)

3.7

xex;{——

2a’

|

ChoosingR’ along one of the coordinate axes and applying
the recurrence relatiofil2, Sec. 8.93B

D-1
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cos §Cy(cos 6) = )[(I+1)C,+1(cos«9)

2(1+

+(2v+1-1)C/_,(cos6)], (3.8

we notice that the orthogonality of the Gegenbauer polyno-
mials[with Cg(cos@)=1] implies that all terms except=1

are zero. From Eq3.7) we finally obtain the mean-square
end-to-end vector for a polymer residing on the surface of a

(D —1)-dimensional sphere as

2y 2 LI LI, Ll<a?
R-R)%)=2a%1-exp — —| |=
{ ))=2a ex 232 2a®, Ll>a?
(3.9

Therefore, a characteristic area®2called the geometrical
localization area emerges in the description{ @—R’)?),
due to the geometrical restriction of space.

In contrast to the problem of a stiff polymer chain without
any confinement, where the chain expands due to chain stiff-
ness, the chain contracts here by geometrical confinement. If
the area of the confining sphere is small in comparison with
LI, then the polymer wraps many times around the sphere so
that ((R—R’)?) approaches the geometrical localization
area. On the other hand,af> L1, then the polymer does not
sense the curvature of the sphere so (f&—R’)?)=LlI.

The mean-square end-to-end distaf@®) normalized ag?

is plotted in Fig. 4, below, as a function of the dimensionless
variable LI/a2. It is also to be noted that(R—R’')?) is
independent oD.

B. Cylinder in R®

Consider a cylinder of radius and of infinite length, with
the induced metric fromk?® (in cyllndncal coordinates, W|th
Jg=a. The position vectoR(s) of any beads has the com-
pionents & cos¢,asin,2. The polymer dimension is
D=2.

The Green'’s function equation in the Laplace sp&:é)

can be solved directly by expanding tig function in the

complete set of orthogonal functions on the ciref8(¢~*")
and Fourier transforming with respectze-z’, which yields

BRRE - 3 f”dk :
TamSte -« 27 E4+ (Im?/4a?) + (1k?/4)
x glm(é—a")gik(z=2") (3.10

After applying an inverse Laplace transform and evaluating
the integral ovek, the spectral expansion &(R|R’;L) is

found to be
G(RIR":L)==— 1 e (z- z/)?/LI % gim(é—¢")
27a ¥ wlLl m== e
x @ LIm*Ha’, (3.1

An equivalent form of the expression above can be ob-
tained by using the relation
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exp(—xxz):L +wdge* EHVe2 () >0)
2 —o
(3.12
and the Poisson formula
+ + oo
2imam _ _
> elmem= % s(q—n) (mneZ). (3.13
m=—owx n=—ow

Applying these transformations in E¢3.11), we arrive at
the thewinding numbermexpansion

G(R|R’;L)= 1 e—(z—z’)zlLI 2 e—az(¢—¢’+2wn)/Ll,

7TL| n=—o
(3.19

where n (a topological term is the winding numberthat
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| 9 4 [
E——Sinza—p————

G(R|R";E
4p p-Idp  4p? 9¢? R )

sin « , ,
=T5(p—p )o(p—¢"). (3.16
We solve this equation in a standard manfis]. First we
eliminate the azimuthal dependence ®fby inserting the
expansion

~ 1 2 _
GRIR'B)=5- 2 Gnlplp";E)exdim(¢—¢")],
(3.17
into Eq. (3.16), which gives

19 4 L v?
__X__ —_—
X X X X2

9,(x|x";E)=— S(x—x"),

(3.18

introduced the new variable=kp, with

x| sin a

where we

2__ H 2 __ 2/ i H
counts how many times the chain winds around the cylinder<”=4E/! sirfe andv®=m Isifa. The solutions of the ho-
A term in the sum represents now the probability that a giveri"09eneous equation are the modified Bessel functions

chain starting aR and ending aR’ will wind around the

I,/(x) and K,j(x). Then, the regularity oﬁy(x|x’;E) at

cylindern times(in L/| step$. This expansion can be used to X=0, x—, the continuity ak=x', and the jump in the first

investigate the statistics of the winding numierg., the
mean-square winding numbéN?)).

To calculate the mean-square end-to-end vector, we insert

(R—R’")?=(z—2')?+2a*[1—cos(@— ¢')] and the distribu-
tion function (3.11) into Eq. (2.9). Evaluating the integrals,
we get

LI LI, Ll<a?

RN = — 19232 1—e LMt ! ]
(RoRDY =g +2aie W= Ll e
(3.15

As expected, the polymer remains almost Gaussapre-
factor of 1/2 instead of )lalong theOz direction. The influ-
ence of the geometry appears through the radjuelated to

derivative impose the solution

- 4
9.(plp" E)= 57— (kp<)K, (kp).  (3.19

| sina
Here p_ and p- denote the smaller and the larger, respec-
tively, between the variablgsandp’; we have also used the
fact that the WronskiawV of the modified Bessel functions
is W[1,,K,](x)=— 1/. Inserting the solution found back
into Eq.(3.17) and performing the inverse Laplace transform
using the formuld 14, Sec. 5.16.56

LYK, [(Va+b)VEIl [ (Va—Vb) VE]}
1 .. a—b
=5re ( b)’ZLly(T)(RGﬂ,Rd:»O), (3.20

we arrive at the exact spectral expansio&gR|R’;L) for a

the mean curvature of the cylinder. Once again, the polymepolymer on a cone:

becomesgeometrically localizedThe mean-square end-to-
end distancénormalized ag?) is represented in Fig. 4, be-

low, as a function of the dimensionless variahlda?.

C. Cone inR®

Now let us consider the surface of cone with the vertex at

the originO, centered about th®z axis and with the open-

+ o

—Tsna am;_x | mwsin«|(20p" /(L] sirPa))

xXexp — e
Ll sirfa

which is properly normalized to[lf dRG(R|R’;L)=1]. For

G(R|R";L)=

exdim(¢—¢')], (3.21

ing angle 2. In cylindrical coordinates, the position vector ,— /2> \we recover the expression in polar coordinates of

R(s) of any point s along the chain is R(s)
= (p(s)cos¢(s),p(s)sin ¢(s),p(s)cot @) and the induced met-
ric is g,,=1+cofa, 9,4=0, gys=p?, Vo=p\1+cofa.

the propagator of a Gaussian polymer chain in the plane

[7.8].
As the total partition sum gives the area of the cone, we

As in the previous problem, the dimension of the polymer iscalculate the end-to-end distance by fixiRg and integrat-

D=2.
To compute the probability distributic®(R|R’;L) of the

ing only over R. Using cylindrical coordinates, with
(R—R")2=(p?+p'?)Isirfa+2pp'[1—cosp—¢')] and ap-

end-to-end vector we start with the Green's function equaplying various formulag12] involving definite integrals of

tion (2.6) obeyed by the Laplace transfor@r

Bessel functions, we obtain
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FIG. 2. The mean-square end-to-end distaf(@—R’)?) nor-
malized toL| for a Gaussian polymer chain embedded on a cone, as
a function oft= p'/\LI anda. FIG. 3. The mean-square end-to-end distaf{@—R’)?) nor-
malized toL| for a Gaussian polymer chain embedded on a cone, as
_ a function oft= p’/+LI anda: 3-D representation.
((R-R")®=LI{ 1+ 2t%cs@a— Jmcsax(1—sirfa)

o spect to thexOy plane. We introduce the toroidal coordi-
X 1F1(—1/2,1;-t’csCa) nates {75,6,¢} [15], where ¢ is the usual azimuthal
I(3/2+1/2cs@) | angle—in cylindrical coordinates—aboQtz:

sin a)(l—csm)t(1+csm)

A ey
I'(1+csa
( ) ~c sinh » cos ¢ _c sinh 7sin ¢

X= [l - [l
coshn—cos 6 y coshn—cos 6

X 1Fq[(csax—1)/2,1+ csar; —t?csCal},

(3.22 csinég
7=—0—, (3.29
wheret=p'/(L1)Y?and ;F, is the confluent hypergeometric cosh#—cos ¢

function.

Rather surprisingly, the mean-square distance depends avhere O< <o, 0< <2, and 0< ¢<2. The surface of
the position of the chain through the parametelio interpret  the torus corresponds to a fixed valggof the coordinate;.
this finding, we calculate the limiting values ¢(R—R’)?)  Then we have the following geometrical relations:
for t—oo (polymer far on the conical surface ar—0), t
—0 (polymer with one end attached to the cone veremd

a= /2 [polymer on a (2B) plane surfack One finds that c

= - - 2_12_ 52
b=c cothyp,, a sinh7g” c°=b°—a“. (3.2H

((R=R")%=LI for {t=0, t—w®, a=={, _ _ _ ) )
The induced metric tensor i$,,= c“/(coshzny—cos6)-,

823  g,,=cZsintPyy/(coshm—cosé)?  gys=040=0, and
g= c?sinh 55/(coshzy,—cos6)?. We recall that the length
interval on the surface isls’=g,,d6*+g,4,d¢* and the
volume element isl’r=\/gdéd .
The calculation of the propagator of a Gaussian chain on

which is just the Gaussian result in all cases. Physically
when the polymer chain is either fixed at the origin-Q) or
far away from it {—o°), there are no other preferred points

on the cone and(R—R')?) has the planar valug@ve should X L . .
« ) P valugy " a torus inR® (which is equivalent to solving the problem of

also remark that a cone is geometrically Jfldh the cross- . _
a free quantum particle moving on the same sujfaamnot

over region, the singular character of the cone vertex bet—) d in closed f it invol finding the ei |
comes dominant and induces thentraction of the chain € done In closed torm, as It INVOIVes Tinding the eigenvalues

(possibly by winding about the originThis behavior is il- of a Hill-type equation. Still, using the path-integral formal-
lustrated in Fig. 2 and Fig. 3, where the mean-square dig>M and making certain “sloppy” approximations, we were

tance((R—R’)?) normalized at.| is plotted as a function of able to deri\_/e an approximate form G(.R|R,;L) that be-
thet parameter and the angle haves physically correct when computing moments of the

distribution ofR—R’, which are the experimentally relevant

guantities we are interested in. This approach will be justi-

fied a posterioriby showing that one recovers the usual flat
Consider a torus embedded ¥, with the circular cross surface case and the expected asymptotic regimes obtained

section of radiug. The axial circle containing the centers of for spheres and cylinders.

the circular sections has the radibs-a (see Fig. 1L The We start be recalling the path representatidrl) written

torus is centered about th@z axis and symmetric with re- in a compact form as

D. Torus in R®
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FIG. 4. The mean-square end-to-end distaf(@—R’)?) nor-
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o= &sj(cosh ny—cos ¢;)(coshny—cos 6 ;)

(3.30

and which satisfies the global scaling relation

N
o= 2, aj=L(coshn,—cos6)(coshzn,—cosf’).
=1
(3.3)

This constraint is nontrivial, as it must be compatible with
the local scaling(3.30. That it gives the correct answer
when applied in the path integral and when one uses an ani-
sometric discretizatior(unequal length intervalds;) was
discussed by Inomatd 7]. Basically, it amounts to the pre-

malized toa? for a Gaussian polymer chain embedded on differentSCription [18] of ignoring terms 0f0(55j1+6) in the path

surfaces, as a function &fl/a? andt= b/a. The symbols joined by

integral, if e>0. Then, the discretized functional measure

thin lines represent the data for the polymer on the surface of thbecomes

curved torus irR3: thick solid line the cylinder inR%; O—O torus,
t=10; 00— torus,t=8; & —< torus,t=6; A—A torus,t=4;
V—V torus,t=2; thick dotted line the spheres®~* in RP.

rv=R N
G(R|R’;L):fr =Rj)[r]exp( —J_}:‘,l sj), (3.26

where the integration measure is given explicitly by

N N—1
Drl= lim dr; 3.2

[ ] N oo jHl al 58] 1'1:[1 ) ( 7)
5Sj~>0
385 =L
]

andsS; is the short-lengthpolymer action,
(rj_rj—l)z

SJ—T (3-28)

In the previous expressiongis;=s;—s;_; (with j=1N,
Sp=0, sy=L) andr; is the position vector about the origin
of the jth element of the discretized chain.

In order to evaluate the path integral, due to the men-
tioned equivalence between the statistical mechanics of poly-
mers and quantum mechanics, we will apply the method
used to calculate the propagator of a free particle moving on

a circle and in the presence of a ring-shaped dd®&8&;16.
We start with the action elemerg;. Using the length
interval on the torus, we writ§; in a symmetrized form

S _02 1
(N sj(cosh ny— cos 6;)(cosh ny—cos 6] _ 1)

X[(A6;)2+sintPyo(A )21, (3.29

where{6;=06(s;), ¢;=¢(s;)} are the toroidal coordinates
of the element located &} along the chainp 6;=6;,— 6;_,

andA¢j:¢j_¢j_1.
Next, we apply a local rescalifg,17], which reads

D[r]=(coshny—cos 6)(coshry—cos ")
N N—-1

[T =11 dé;de;c?sinh 7. (3.32
j=1 0jj=1

We apply now the length rescaling in the acti®ngiven by
Eq. (3.29 directly, by dropping boldly any terms coming
from a rigorous expansion af §; and A ¢; about the new
length variableo; . As mentioned, this will be justified by
the final results. Combining then with the integration mea-
sure, we get the approximate discretized propagater

1
GN(RIR;0)~ Ez(cosh 10— Ccos ) (coshny—cos §’)
N 2

><]_[C

j=1 mojJo

2m

N—-1
II de,
j=1

(A6;)?

gj

N
C2

xexr{ -T2

j=1

N

E (A¢J)2 '

j=1 O'l

o N—1
xf [1 dg;sinh 7,
0 j=1
c?sinkP 7,

o5

Observing that the integrals over the angular coordinates are
similar to the path integral for a free particle moving on a
circle (e.g., see Refg6,7]), we have the formula

(3.33

N 112 N-1 N 2
a 2m (A¢)
— dyexp —
jl(Tij) fo jﬂl Ui ;{ ajgl a;j
=S e (o) i 2m)?, (3.3
TO n=—-w

Herea is an arbitrary positive constant agig= (o) is the
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discretized angular variable on the circle, wigH and ¢  propagatorGy, integrating over the angles using formula

denoting the initial and the final positions. Equivalently, (3.34), and replacings with its global value(3.32), we fi-

recognizing that the angular path integral contains trajectonally obtain—up to a normalization factor—the approximate

ries that wind a different number of times around the origin,distribution function of the end-to-end distance for a polymer

one can use the covering space mappid)]. chain on a curved torus i3, expressed asw&inding num-
Returning to Eq(3.33 of the approximate discretized ber expansion:

1 & < c?
G(RIR ;L)an;w mzz_m &P LI(coshzg—cos 6)(coshzny—cos ')
X[(6— 0" +2mn)%+ (sintf 7o) (p— ¢’ +27m)?] | . (3.39

Another compact and illuminating form is obtained by em-whenLl/a? —0:
ploying the transformation$3.12) and (3.13, which yield

the angular momentunexpansion
Z(x—>o,t)=f fd2RG(R,|_|R,0)

t 7 t(t—t°—1)
X+

1 (coshny—cos #)(coshny,—cosh’) =47 o(x?),

+
G(R|R’;L)~—2 X 60 JiZ—1
4

c¢?sinh 7,

(3.39

—_pn' i ’ 2
XOL(0=07)/210(0,07)1/(4mcT)] where we introduced the dimensionless variables

X O3 (p— " )2j0(6,0)I(4mc3sintt 70)],

b LI
(339 t=coshny==, x=-—. (3.40
a a2

where we recall thatr(9,68')=L(coshyg,—cosé)(coshy, A closed formula fo (R—R’)?) cannot be readily'obte.lined
—cos#), c>=b%—a? and coshy=b/a. @, is the theta and a numerical calculation is required. To begin with, we

function defined a§12] write the distancdin R®) between the ends of the polymer
chain:
" 2¢?
N (R—R')*=
Os(z,7)= >, €™l (Imr>0). (3.3 (cosh ny—cos 6)(coshry—cos §')
n=—o

X [costt7o—sintf 7,

First, we stress that this is not the exact Green function of the Xcogp—¢')—cog 6= 6")]. (3.41

heat equation on the curved torus. Still, as necessary, thgsing the Green functio(8.36) in the formula for the mean-
expression is symmetric iR,R’, translationally invariant square end-to-end distan¢29 with the proper volume el-
with respect to the azimuthal angtg, and in the limity,  ement on the surface of the torus, evaluating the integrals
—w=a—0 reduces properly to the probability distribution over the azimuthal angleg and ¢’ by applying the defini-

of the end-to-end vector for a polymer on a cirfiee the tion (3.37) of the theta function and the formula

angular part in Eq(3.14)]. Also, it obeys the initial condition

J fozwd¢d¢>'cos<¢>— )M II=2m( 5 st ),

G(R[R";0)=56?(R-R"), (3.39 (3.42
and expressing all quantities in terms of the dimensionless

variables from Eq(3.40, we eventually obtain the mean-
and its trace has, at least numerically, the correct Ijif square end-to-end distance as
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((R—R’ 2(t2 1)f J'zw t2+ (1—t2)e‘ x(t—cosa)(t—cose')/4“2—1)2_Cosw_ o)
ded
a® N(X,t) (t—cos 0)%(t—cos #’)?
< 60— 6" ix(t—cosh)(t—cosh') (3.43
2 Am(t2—1) ’ '
|
whereN(x,t) is given by propagator from Eq(3.36) produces the correct behavior.
Becausea’<L|<b?, the termn=0 dominates in the theta
N(X.1) f f2w o 1 function in Eq.(3.43 [®3(z,7)~1] and the exponential co-
X —_— . . _ 2 . . . .
(t—cos 8)(t—cos6’) efficient of 1—t“ can be expanded; so one obtains explicitly
ro ' L
0— 6" ix(t—cosp)(t—coso’) ((R-R")A)=2a%+— (a’<LI<b?), (3.49
X0, , > . 2 '
2 4d7(t°—1)

(3.44) which is just the limit for the polymer on the cylinder of
radiusa from Eq. (3.15.
The partition functionZ(x,t) of the polymer on the torus is Eventually, at any givent and large enoughx,
3 ((R—R’")?) departs from the behavior of a polymer on a
Z(x,t)=a*(t*=1)**N(x,t). (349 cylinder and approaches a constant value, which is a function
This reduces properly to the arearZab of the torus when \cl)gllzeof (t:gi g%zmeéggﬁéiﬁi rag?éiﬁfe? b'N-(I;C\IIS I\lNrr;mnrg]]ave

x>1,1>1[6(z,7)=1]: a?<b?<Ll; thus once agai®s(z,7)~1 but the exponen-
tial coefficient of 1—t? in the formula for distanc€3.43 is
Z(x,t)=4m%ab /1_ tizz‘lwzab' (3.46 zero, which gives the limit
((R-R")%)~2(a?+b?) (a?<b?<Ll). (3.49
Physically, for different values of andt, three regimes are
expected: If either a or b radii becomes 0, one recovers the asymptotic
limits of the end-to-end distance for a polymer on a circle or
X on a sphere, respectively, as found in E9).
(@ Ll<a’<b?s S<x<1, (3.473 Although the asymptotic behavior is correctly recovered,
t we expect our results in the crossover region of intermediate
values oft andx to be only approximate.

X
(b) a’<Lli<b?e —<1<Xx, (3.47b
t? IV. CONCLUSIONS

Because of its relevance to studies of the behavior of
© al<b’<llol< £Z<X, (3.479 polymers confined at interfa_ces, we have copsidered here t.he
problem of a linear, Gaussian polymer chain embedded in
the following surfaces: th8° ! spherein D dimensions, the
where in the first case we should recover the solution for aylinder, the coneand thecurved torusin R3.
polymer in the plane, in the second we must obtain the result We obtained closed formulas for the probability distribu-
for a polymer on a cylinder, and in the third the mean squargion function G(R|R’;L) of the end-to-end vector of the
end-to-end distance should reach a constant védoere-  chain for the sphere, the cylinder and the cone and an ap-
sponding to a large winding number about both @eaxis  proximate propagator for the torus. We calculated, analyti-

and the axial circle of radius). cally in the case of the sphere, the cylinder and the cone, and
These regimes are manifest in Fig. 4, where the results fonumerically for the torus, thenean-square end-to-end dis-
the torus are plotted with thin lines, for={2,4,6,8,10. tance(in the embedding spatef the chain. As such, at least

Initially [the first regime in Eq(3.47)], the polymer is too in the limiting regimes previously described, the results are
small to explore the geometry of the surface, and we recovesilso valid for a free quantum particle on a torus if one uses
(numerically the case of a polymer in a plane. This is alsothe mapping{L —t—t',2A — m/i% } (wheret andt’ repre-
the behavior found for the other surfaces. sent the final and initial time coordinates of the parjicle

As the length of the chain increases, it starts winding Our calculations demonstrate the role played by the ge-
along the circle of radiug. and then along the axial circle, ometry (curvatureandshape of the interface in controlling
about the Oz axis. Whent increases, the behavior is the size of the chain.
similar—for a certain range of values—to that of a chain As the size of the confining surface decreases, the poly-
on a cylinder: The mean-square end-to-end distance is lineamer size is determined by the parameters of the confining
in LI/2. We can check analytically that the approximatesurface instead of chain length. The crossover between the
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free Gaussian chain limit and the confined limit is controlled A number of open problems come into attention: the cal-
by a characteristic geometrical localization afe&A is pro-  culation of the mean-squageodesiend-to-end distanc@s
portional toa? for the cases of spheres and cylinders, andneasured on the surface and not in the embedding space
there are two characteristic areas proportionahtandb?  the statistics of the winding numbe(rmainly for the polymer

for the case of curved torus. For the cone, the localizatioon the torus cagethe influence of the topological defects
area is variable and is determined by the position of thexxisting on the surface, the presence of excluded volume,
singular point(the vertex about the chain and by the angle and other types of potential interactions. We hope to address
«. EXpllClt closed formulas are derived for the dependenc%ome of these issues in the near future.

of the mean-square end-to-end distance of a Gaussian chain

on the geometrical parameters of the confining surface. The

formulas for spheres and cylinders are sinjilgs.(3.9) and ACKNOWLEDGMENTS
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