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Brownian motion and polymer statistics on certain curved manifolds

Radu P. Mondescu* and M. Muthukumar
Department of Physics and Astronomy, and Polymer Science and Engineering Department and Materials Research Scien

and Engineering Center, University of Massachusetts, Amherst, Massachusetts 01003
~Received 11 November 1997!

In this paper we have considered a Gaussian polymer chain of lengthL as an intrinsic object enclosed on a
surface embedded in the Euclidean space. When the surfaces are the sphereSD21 in D dimensions and the
cylinder, the cone and the curved torus inR3, we have calculated analytically and numerically~using the
diffusion equation and the path-integral approach! the probability distribution functionG(RuR8;L) of the
end-to-end vectorR2R8 and the mean-square end-to-end distance^(R2R8)2& of the polymer chain. Our
findings are that the curvature of the surfaces induces ageometrical localization area; at short scales (L
→0) the polymer islocally flat and the mean-square end-to-end distance is just the Gaussian valueLl ( l 5

Kuhn length!, independent of the metric properties of the surface; at large scales (L→`), ^(R2R8)2& tends to
a constant value in the sphere case, and it is linear inL for the cylinder and reaches different constant values
~as a function of the geometry of the surface! for the curved torus. In the case of the cone, contraction of the
chain is induced at all length scales by the presence of the vertex, as a function of the opening angle 2a and
the end positionR8 of the chain. Explicit crossover formulas are derived forG(RuR8;L) and ^(R2R8)2&.
@S1063-651X~98!05304-5#

PACS number~s!: 36.20.Ey, 05.20.2y, 05.40.1j
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I. INTRODUCTION

Statistics and topological characteristics of polymers e
bedded in curved interfaces are of significance in biolog
problems related to the way polymers wrap around spher
and rodlike macromolecules and vesicles, and the role pla
by geometry and topology in the dynamics of a biomolec
captured on the membrane of a cell@1#. These types of issue
arise in other area of physics as well: the quantum mecha
of free particles in curved and multiply connected spa
~e.g., see Ref.@2#!, the physics of vortex lines in type-I
superconductors,@3# and the rotational Brownian motion.

In realistic situations, excluded-volume interactions b
tween polymer segments and fluctuations of curved in
faces need to be accounted for. Under these circumstan
only approximate analytical results can be generally obtai
via perturbation analysis, variational techniques, or ren
malization group theory. Before embarking on such an
fort, it is necessary to solve the problem of a free polym
chain, characterized only by its connectivity, on a curv
fixed surface.

In the present paper we derive, using a path-integral
spectral representation, the probability distribution of t
end-to-end vectorG(RuR8;L) and the size—expressed b
the mean-square end-to-end distance^(R2R8)2& in the am-
bient space—of an ideal~noninteracting! Gaussian polymer
lying on a curved manifold.

The curved surfaces studied in this paper are theSD21

sphere inD dimensions@Fig. 1~A!, for D53#, the cylinder
@Fig. 1~B!#, the circularcone@Fig. 1~C!#, and thetorus @Fig.
1~D!# in R3. The geometrical parameters are shown in Fig
The polymer is an intrinsic (D21)-dimensional object in the

*Also at The National Institute of Materials Physics, Bucure¸ti,
Romania.
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spherical surface, while it is two-dimensional in the oth
surfaces.

Although due to the equivalence between the rando
walk problem and the statistics of an ideal Gaussian ch
@4# many results are already available from the theory
Brownian motion, the specific problems we address h
have not been answered yet.

FIG. 1. The geometrical data that characterize the sphere~A!,
the cylinder~B!, the cone~C! and the torus~D!: a is the radius of
the sphere, of the cylinder, and of the circular cross section of
torus;b is the radius of the axial circle of the torus;a is the angle
of the cone at the vertex.
4411 © 1998 The American Physical Society



r

on
no
te

in

th

e
a

t

h

lly

n

lity

nce
mea-
ace,
red

is-
s,
id

e
n-

e

g

4412 57RADU P. MONDESCU AND M. MUTHUKUMAR
In our calculations we have used the path-integral rep
sentation @4,5# of the probability distribution function
G(RuR8;L) of a Gaussian polymer chain and the diffusi
equation obeyed by this probability. As mentioned,
excluded-volume or other types of interactions are accoun
for in this paper.

II. FORMULATION

Let us consider aD-dimensional Gaussian polymer cha
with N links of Kuhn lengthl and total lengthL5Nl, with
the first bead located atR8 and the last one atR. The end-
to-end vectorR2R8 is distributed according to the following
probability distribution function, given as an explicit pa
integral @5#:

G~RuR8;L !5 lim
N→`
ds→0

Nds5L

S D

2p ldsD
DN/2E

r05R8

rN5R

)
j 51

N21

dDr j

3expF2
D

2lds(j 51

N

~r j2r j 21!2G , ~2.1!

whereD is the intrinsic dimension of the polymer,ds is the
change in the arc lengths along the chain, andr j is the
position vector of thej th bead of the polymer chain. Not
that the distance on the surface is calculated
(r j2r j 21)25guv(uj2uj 21)(v j2v j 21), where u,v are the
intrinsic coordinates and the metric tensorguv is discretized
in a symmetric form or using the midpoint rule~e.g., see
Refs. @6,7#!. In RD, the expression~2.1! gives the Gaussian
probability distribution

G~RuR8;L !5S D

2pLl D
D/2

expF2
D

2Ll
~R2R8!2G . ~2.2!

The probabilityG(RuR8;L) obeys the diffusion equation

S ]

]L
2

l

2D
D DG~RuR8;L !50, ~2.3!

subject to the initial condition

lim
L→0

G~RuR8;L !5d~D !~R2R8!. ~2.4!

When the polymer lies in a curved manifold, one needs
employ the Laplace-Beltrami operator given by~e.g., see
Ref. @6#!

D5
1

Ag
] ig

i j ] j , ~2.5!

wheregi j is the inverse of the metric tensorgi j of the surface
and g5det(gi j ). We remark thatgi j is the induced metric
from the ambient embedding space (RD or R3).

One can obtain the solution of Eq.~2.3! satisfying the
initial condition ~2.4! by applying a Laplace transform wit
respect toL that gives the Green’s function equation
e-

d

s

o

S E2
l

2D
D D G̃~RuR8;E!5d~D !~R2R8!, ~2.6!

which can be solved by an eigenfunction expansion ofG̃
followed by an inverse Laplace transform that eventua
yields theheat kernel:

G~RuR8;L !5(
m

fm~R!fm* ~R8!exp~2EmL !. ~2.7!

Herefm andEm are obtained from the eigenvalue equatio

2
l

2D
Dfm~R!5Emfm~R!, ~2.8!

with m some generalized index. In general, the probabi
distribution G(RuR8;L) is not translational invariant. The
mean-square end-to-end distancecan be calculated from

^~R2R8!2&5

E dDRdDR8~R2R8!2G~RuR8;L !

E dDRdDR8G~RuR8;L !

.

~2.9!

It is to be noted that the calculated mean-square dista
represents the distance between the ends of the polymer
sured by an outside observer, located in the ambient sp
which is different from the geodesic separation measu
along the surface.

III. CALCULATIONS AND RESULTS

Because of the known equivalence@4,8# between the dif-
fusion equation~2.3! and the Schro¨dinger equation for a free
particle, we can readily obtain the polymer probability d
tribution G(R,R8;L) for the sphere and the cylinder case
from the corresponding probability amplitudes for a rig
rotor in D dimensions@9# and for a 2 –D free particle mov-
ing on the surface of a cylinder, respectively.

A. SphereSD21 in RD

Let a be the radius of the (D21)-dimensional sphere
centered at the origin of the coordinate system. ThenR(s) is
a vector of magnitudea that measures the position of th
bead ats about the center of the sphere. The intrinsic dime
sion of the polymer isD21. In spherical coordinates th
Laplace-Beltrami operator~2.5! becomes@7, Sec. 4.2.3#

D5
1

a2
L2, ~3.1!

whereL2 is theD-dimensional Legendre operator, satisfyin
the eigenvalue equation

L2SJ
m~V!52J~J1D22!SJ

m~V!. ~3.2!
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TheSJ
m functions are the hyperspherical harmonics orthon

mal and complete on the unitSD21 sphere@10#:

E dVSJ
m~V!SJ8

m8~V!5dJJ8dmm8,

(
J50

`

(
m51

M

SJ
m~V!SJ

m* ~V8!5d~D !~V2V8!, ~3.3!

where M5 (2J1D22)(J1D23)!/J!(D22)! and V is
the solid angle inD dimensions. Using Eq.~3.2! and the
eigenvalue expansion~2.7!, where fm→SJ

m and Em

→J(J1D22), we readily find the probability distribution
function of a polymer chain~or, equivalently, of a random
walk! that starts atR8 and ends atR in N5L/ l steps, on the
SD21 sphere:

G~RuR8;L !5
1

aD21(J50

`

(
m51

M

SJ
m~V!SJ

m* ~V8!

3expF2
Ll

2a2

J~J1D22!

D21 G . ~3.4!

The probability found above is normalized properly to o
(*dDRG(RuR8;L)51!. In R3 we recover the known@11#
rotational diffusion result

G~RuR8;L !5
1

a2(l 50

`

(
m52 l

l

Ylm~V!,Ylm* ~V8!

3expF2
Ll

4a2
J~J11!G . ~3.5!

BecauseG(RuR8;L) is translationally invariant, the end-to
end distance can be calculated as a conditional expecta
value by dropping the integration overR8 in Eq. ~2.9!. To
evaluate the remaining integral, we use the addition theor
for hyperspherical harmonics@10#,

(
m51

M

SJ
m~V!SJ

m* ~V8!

5
1

SD

~2J1D22!

D22
CJ

~D22!/2~cosCRR8!, ~3.6!

whereSD5 2pD/2/G(D/2) andCJ
n are the Gegenbauer poly

nomials of argument coscRR8. Writing (R2R8)2

52a2@12cosCRR8# and inserting Eq.~3.4! into Eq. ~2.9!,
we get

^~R2R8!2&52a2S 12
1

SD
(
J50

` E dV
2J1D22

D22
cosCRR8

3CJ
~D22!/2~cosCRR8!

3expF2
Ll

2a2

J~J1D22!

D21 G D . ~3.7!

ChoosingR8 along one of the coordinate axes and apply
the recurrence relation@12, Sec. 8.933#,
r-

on

,

g

cosuCl
n~cosu!5

1

2~ l 1n!
@~ l 11!Cl 11

n ~cosu!

1~2n1 l 21!Cl 21
n ~cosu!#, ~3.8!

we notice that the orthogonality of the Gegenbauer poly
mials @with C0

n(cosu)51] implies that all terms exceptJ51
are zero. From Eq.~3.7! we finally obtain the mean-squar
end-to-end vector for a polymer residing on the surface o
(D21)-dimensional sphere as

^~R2R8!2&52a2F12expS 2
Ll

2a2D G.H Ll , Ll !a2,

2a2, Ll @a2.
~3.9!

Therefore, a characteristic area 2a2 called the geometrica
localization area emerges in the description of^(R2R8)2&,
due to the geometrical restriction of space.

In contrast to the problem of a stiff polymer chain witho
any confinement, where the chain expands due to chain s
ness, the chain contracts here by geometrical confinemen
the area of the confining sphere is small in comparison w
Ll , then the polymer wraps many times around the spher
that ^(R2R8)2& approaches the geometrical localizatio
area. On the other hand, ifa2@Ll , then the polymer does no
sense the curvature of the sphere so that^(R2R8)2&5Ll .
The mean-square end-to-end distance~3.9! normalized ata2

is plotted in Fig. 4, below, as a function of the dimensionle
variable Ll /a2. It is also to be noted that̂(R2R8)2& is
independent ofD.

B. Cylinder in R3

Consider a cylinder of radiusa and of infinite length, with
the induced metric fromR3 ~in cylindrical coordinates, with
Oz along the axis of the cylinder!: gff5a2, gfz50, gzz51,
Ag5a. The position vectorR(s) of any beads has the com-
ponents (a cosf,a sinf,z). The polymer dimension is
D52.

The Green’s function equation in the Laplace space~2.6!
can be solved directly by expanding theG̃ function in the
complete set of orthogonal functions on the circleeim(f2f8)

and Fourier transforming with respect toz2z8, which yields

G̃~RuR8;E!5
1

2pa (
m52`

` E
2`

1` dk

2p

1

E1 ~ lm2/4a2! 1 ~ lk2/4!

3eim~f2f8!eik~z2z8!. ~3.10!

After applying an inverse Laplace transform and evaluat
the integral overk, the spectral expansion ofG(RuR8;L) is
found to be

G~RuR8;L !5
1

2pa
A 1

pLl
e2 ~z2z8!2/Ll (

m52`

`

eim~f2f8!

3e2 Llm2/4a2
. ~3.11!

An equivalent form of the expression above can be
tained by using the relation
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exp~2lx2!5
1

A2p
E

2`

1`

dje2 j21 iA2ljx/2 ~l.0!

~3.12!

and the Poisson formula

(
m52`

1`

e2ipam5 (
n52`

1`

d~a2n! ~m,nPZ!. ~3.13!

Applying these transformations in Eq.~3.11!, we arrive at
the thewinding numberexpansion

G~RuR8;L !5
1

pLl
e2 ~z2z8!2/Ll (

n52`

`

e2 a2~f2f812pn!/Ll ,

~3.14!

where n ~a topological term! is the winding numberthat
counts how many times the chain winds around the cylind
A term in the sum represents now the probability that a giv
chain starting atR and ending atR8 will wind around the
cylindern times~in L/ l steps!. This expansion can be used
investigate the statistics of the winding number~e.g., the
mean-square winding number^N2&).

To calculate the mean-square end-to-end vector, we in
(R2R8)25(z2z8)212a2@12cos(f2f8)# and the distribu-
tion function ~3.11! into Eq. ~2.9!. Evaluating the integrals
we get

^~R2R8!2&5
Ll

2
12a2@12e2 Ll /4a2

#.H Ll , Ll !a2

Ll

2
, Ll @a2.

~3.15!

As expected, the polymer remains almost Gaussian~a pre-
factor of 1/2 instead of 1! along theOz direction. The influ-
ence of the geometry appears through the radiusa, related to
the mean curvature of the cylinder. Once again, the poly
becomesgeometrically localized. The mean-square end-to
end distance~normalized ata2) is represented in Fig. 4, be
low, as a function of the dimensionless variableLl /a2.

C. Cone in R3

Now let us consider the surface of cone with the vertex
the originO, centered about theOz axis and with the open
ing angle 2a. In cylindrical coordinates, the position vecto
R(s) of any point s along the chain is R(s)
5„r(s)cosf(s),r(s)sinf(s),r(s)cota… and the induced met
ric is grr511cot2a, grf50, gff5r2, Ag5rA11cot2a.
As in the previous problem, the dimension of the polyme
D52.

To compute the probability distributionG(RuR8;L) of the
end-to-end vector we start with the Green’s function eq
tion ~2.6! obeyed by the Laplace transformG̃:
r.
n

ert

er

t

s

-

S E2
l

4r
sin2a

]

]r
r

]

]r
2

l

4r2

]2

]f2D G̃~RuR8;E!

5
sin a

r
d~r2r8!d~f2f8!. ~3.16!

We solve this equation in a standard manner@13#. First we
eliminate the azimuthal dependence ofG̃ by inserting the
expansion

G̃~RuR8;E!5
1

2p (
m52`

1`

g̃m~rur8;E!exp@ im~f2f8!#,

~3.17!

into Eq. ~3.16!, which gives

F1

x

]

]x
x

]

]x
2S 11

n2

x2D G g̃n~xux8;E!52
4

xl sin a
d~x2x8!,

~3.18!

where we introduced the new variablex5kr, with
k254E/ l sin2a andn25 m2/sin2a. The solutions of the ho-
mogeneous equation are the modified Bessel functi
I unu(x) and K unu(x). Then, the regularity ofg̃n(xux8;E) at
x50, x→`, the continuity atx5x8, and the jump in the first
derivative impose the solution

g̃n~rur8;E!5
4

l sin a
I unu~kr,!K unu~kr.!. ~3.19!

Here r, and r. denote the smaller and the larger, respe
tively, between the variablesr andr8; we have also used th
fact that the WronskianW of the modified Bessel function
is W@ I n ,Kn#(x)52 1/x. Inserting the solution found bac
into Eq.~3.17! and performing the inverse Laplace transfor
using the formula@14, Sec. 5.16.56#,

L21$Kn@~Aa1Ab!AE#I n@~Aa2Ab!AE#%

5
1

2L
e2 ~a1b!/2LI nS a2b

2L D ~Rea,Reb.0!, ~3.20!

we arrive at the exact spectral expansion ofG(RuR8;L) for a
polymer on a cone:

G~RuR8;L !5
1

pLl sin a (
m52`

1`

I u m/sin a u„2rr8/~Ll sin2a!…

3expF2
r21r82

Ll sin2a
Gexp@ im~f2f8!#, ~3.21!

which is properly normalized to 1@*dRG(RuR8;L)51#. For
a5 p/2 we recover the expression in polar coordinates
the propagator of a Gaussian polymer chain in the pl
@7,8#.

As the total partition sum gives the area of the cone,
calculate the end-to-end distance by fixingR8 and integrat-
ing only over R. Using cylindrical coordinates, with
(R2R8)25(r21r82)/sin2a12rr8@12cos(f2f8)# and ap-
plying various formulas@12# involving definite integrals of
Bessel functions, we obtain
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^~R2R8!2&5Ll H 112t2csc2a2Apcsca~12sin2a!

3 1F1~21/2,1;2t2csc2a!

22
G~3/211/2csca!

G~11csca!
~sin a!~12csca!t ~11csca!

3 1F1@~csca21!/2,11csca;2t2csc2a#J ,

~3.22!

wheret5r8/(Ll )1/2 and 1F1 is the confluent hypergeometri
function.

Rather surprisingly, the mean-square distance depend
the position of the chain through the parametert. To interpret
this finding, we calculate the limiting values of^(R2R8)2&
for t→` ~polymer far on the conical surface ora→0), t
→0 ~polymer with one end attached to the cone vertex! and
a5 p/2 @polymer on a (2-D) plane surface#. One finds that

^~R2R8!2&5Ll for H t50, t→`, a5
p

2 J ,

~3.23!

which is just the Gaussian result in all cases. Physica
when the polymer chain is either fixed at the origin (t50) or
far away from it (t→`), there are no other preferred poin
on the cone and̂(R2R8)2& has the planar value~we should
also remark that a cone is geometrically flat!. In the cross-
over region, the singular character of the cone vertex
comes dominant and induces thecontraction of the chain
~possibly by winding about the origin!. This behavior is il-
lustrated in Fig. 2 and Fig. 3, where the mean-square
tance^(R2R8)2& normalized atLl is plotted as a function o
the t parameter and the anglea.

D. Torus in R3

Consider a torus embedded inR3, with the circular cross
section of radiusa. The axial circle containing the centers
the circular sections has the radiusb.a ~see Fig. 1!. The
torus is centered about theOz axis and symmetric with re

FIG. 2. The mean-square end-to-end distance^(R2R8)2& nor-
malized toLl for a Gaussian polymer chain embedded on a cone
a function oft5 r8/ALl anda.
on

,

e-

s-

spect to thexOy plane. We introduce the toroidal coord
nates $h,u,f% @15#, where f is the usual azimutha
angle—in cylindrical coordinates—aboutOz:

x5
c sinh h cosf

coshh2cosu
, y5

c sinh hsin f

coshh2cosu
,

z5
c sin u

coshh2cosu
, ~3.24!

where 0<h,`, 0<u,2p, and 0<f,2p. The surface of
the torus corresponds to a fixed valueh0 of the coordinateh.
Then we have the following geometrical relations:

b5c cothh0 , a5
c

sinh h0
, c25b22a2. ~3.25!

The induced metric tensor isguu5 c2/(coshh02cosu)2,
gff5 c2sinh2h0 /(coshh02cosu)2; guf5gfu50, and
Ag5 c2sinhh0 /(coshh02cosu)2. We recall that the length
interval on the surface isds25guudu21gffdf2 and the
volume element isd2r5Agdudf.

The calculation of the propagator of a Gaussian chain
a torus inR3 ~which is equivalent to solving the problem o
a free quantum particle moving on the same surface! cannot
be done in closed form, as it involves finding the eigenvalu
of a Hill-type equation. Still, using the path-integral forma
ism and making certain ‘‘sloppy’’ approximations, we we
able to derive an approximate form ofG(RuR8;L) that be-
haves physically correct when computing moments of
distribution ofR2R8, which are the experimentally relevan
quantities we are interested in. This approach will be ju
fied a posterioriby showing that one recovers the usual fl
surface case and the expected asymptotic regimes obta
for spheres and cylinders.

We start be recalling the path representation~2.1! written
in a compact form as

as

FIG. 3. The mean-square end-to-end distance^(R2R8)2& nor-
malized toLl for a Gaussian polymer chain embedded on a cone
a function oft5 r8/ALl anda: 3–D representation.
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G~RuR8;L !5E
r05R8

rN5R
D@r #expS 2(

j 51

N

Sj D , ~3.26!

where the integration measure is given explicitly by

D@r #5 lim
N→`
dsj→0

(
j
dsj 5L

)
j 51

N
1

p ldsj
)
j 51

N21

d2r j ~3.27!

andSj is theshort-lengthpolymer action,

Sj5
~r j2r j 21!2

ldsj
. ~3.28!

In the previous expressions,dsj5sj2sj 21 ~with j 51,N̄,
s050, sN5L) and r j is the position vector about the origi
of the j th element of the discretized chain.

In order to evaluate the path integral, due to the m
tioned equivalence between the statistical mechanics of p
mers and quantum mechanics, we will apply the meth
used to calculate the propagator of a free particle moving
a circle and in the presence of a ring-shaped defect@6,8,16#.

We start with the action elementSj . Using the length
interval on the torus, we writeSj in a symmetrized form

Sj5
c2

l

1

dsj~coshh02cosu j !~coshh02cosu j 21!

3@~Du j !
21sinh2h0~Df j !

2#, ~3.29!

where $u j5u(sj ), f j5f(sj )% are the toroidal coordinate
of the element located atsj along the chain,Du j5u j2u j 21,
andDf j5f j2f j 21.

Next, we apply a local rescaling@7,17#, which reads

FIG. 4. The mean-square end-to-end distance^(R2R8)2& nor-
malized toa2 for a Gaussian polymer chain embedded on differ
surfaces, as a function ofLl /a2 andt5 b/a. The symbols joined by
thin lines represent the data for the polymer on the surface of
curved torus inR3: thick solid line, the cylinder inR3; s—s torus,
t510; h—h torus,t58; L—L torus,t56; n—n torus,t54;
,—, torus,t52; thick dotted line, the sphereSD21 in RD.
-
y-
d
n

s j5dsj~coshh02cosu j !~coshh02cosu j 21!
~3.30!

and which satisfies the global scaling relation

s5(
j 51

N

s j5L~coshh02cosu!~coshh02cosu8!.

~3.31!

This constraint is nontrivial, as it must be compatible w
the local scaling~3.30!. That it gives the correct answe
when applied in the path integral and when one uses an
sometric discretization~unequal length intervalsdsj ) was
discussed by Inomata@17#. Basically, it amounts to the pre
scription @18# of ignoring terms ofO(dsj

11e) in the path
integral, if e.0. Then, the discretized functional measu
becomes

D@r #5~coshh02cosu!~coshh02cosu8!

3)
j 51

N
1

s j
)
j 51

N21

du jdf j c
2sinh h0 . ~3.32!

We apply now the length rescaling in the actionSj given by
Eq. ~3.29! directly, by dropping boldly any terms comin
from a rigorous expansion ofDu j and Df j about the new
length variables j . As mentioned, this will be justified by
the final results. Combining then with the integration me
sure, we get the approximate discretized propagatorGN :

GN~RuR8;s!'
1

c2 ~coshh02cosu!~coshh02cosu8!

3)
j 51

N
c2

p ls j
E

0

2p

)
j 51

N21

du j

3expF2
c2

l (
j 51

N
~Du j !

2

s j
G

3E
0

2p

)
j 51

N21

df jsinh h0

3expF2
c2sinh2h0

l (
j 51

N
~Df j !

2.

s j
G . ~3.33!

Observing that the integrals over the angular coordinates
similar to the path integral for a free particle moving on
circle ~e.g., see Refs.@6,7#!, we have the formula

)
j 51

N S a

ps j
D 1/2E

0

2p

)
j 51

N21

dc jexpS 2a (
j 51

N
~Dc j !

2

s j
D

5A a

ps (
n52`

`

e2~a/s! ~c2c812pn!2
. ~3.34!

Herea is an arbitrary positive constant andc j5c(s j ) is the

t

e
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discretized angular variable on the circle, withc8 and c
denoting the initial and the final positions. Equivalent
recognizing that the angular path integral contains traje
ries that wind a different number of times around the orig
one can use the covering space mapping@6,7#.

Returning to Eq.~3.33! of the approximate discretized
m

th
t

n

-
,

propagatorGN , integrating over the angles using formu
~3.34!, and replacings with its global value~3.31!, we fi-
nally obtain—up to a normalization factor—the approxima
distribution function of the end-to-end distance for a polym
chain on a curved torus inR3, expressed as awinding num-
ber expansion:
G~RuR8;L !'
1

pLl (
n52`

`

(
m52`

`

expH 2
c2

Ll ~coshh02cosu!~coshh02cosu8!

3@~u2u812pn!21~sinh2h0!~f2f812pm!2#J . ~3.35!
we
r

rals

ess
-

Another compact and illuminating form is obtained by e
ploying the transformations~3.12! and ~3.13!, which yield
the angular momentumexpansion

G~RuR8;L !'
1

4p2

~coshh02cosu!~coshh02cosu8!

c2sinh h0

3Q3@~u2u8!/2,is~u,u8!l /~4pc2!#

3Q3@~f2f8!/2,is~u,u8!l /~4pc2sinh2h0!#,

~3.36!

where we recall thats(u,u8)5L(coshh02cosu)(coshh0

2cosu8), c25b22a2, and coshh05b/a. Q3 is the theta
function defined as@12#

Q3~z,t!5 (
n52`

`

eiptn2
e2izn ~ Imt.0!. ~3.37!

First, we stress that this is not the exact Green function of
heat equation on the curved torus. Still, as necessary,
expression is symmetric inR,R8, translationally invariant
with respect to the azimuthal anglef, and in the limith0

→`[a→0 reduces properly to the probability distributio
of the end-to-end vector for a polymer on a circle@see the
angular part in Eq.~3.14!#. Also, it obeys the initial condition

G~RuR8;0!5d~2!~R2R8!, ~3.38!

and its trace has, at least numerically, the correct limit@19#
-

e
he

whenLl /a2→0:

Z~x→0,t !5E E d2RG~R,LuR,0!

.4p
t

x
1

p3

60
x

t~ t2At221!

At221
1o~x2!,

~3.39!

where we introduced the dimensionless variables

t5coshh05
b

a
, x5

Ll

a2
. ~3.40!

A closed formula for̂ (R2R8)2& cannot be readily obtained
and a numerical calculation is required. To begin with,
write the distance~in R3) between the ends of the polyme
chain:

~R2R8!25
2c2

~coshh02cosu!~coshh02cosu8!

3@cosh2h02sinh2h0

3cos~f2f8!2cos~u2u8!#. ~3.41!

Using the Green function~3.36! in the formula for the mean-
square end-to-end distance~2.9! with the proper volume el-
ement on the surface of the torus, evaluating the integ
over the azimuthal anglesf andf8 by applying the defini-
tion ~3.37! of the theta function and the formula

E E
0

2p

dfdf8cos~f2f8!eim~f2f8!52p2~d21m1d11m!,

~3.42!

and expressing all quantities in terms of the dimensionl
variables from Eq.~3.40!, we eventually obtain the mean
square end-to-end distance as
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^~R2R8!2&

a2
5

2~ t221!

N~x,t ! E E
0

2p

dudu8
t21~12t2!e2 x~ t2cosu!~ t2cosu8!/4~ t221!2

2cos~u2u8!

~ t2cosu!2~ t2cosu8!2

3Q3S u2u8

2
,
ix~ t2cosu!~ t2cosu8!

4p~ t221!
D , ~3.43!
r
su
ar

f

v
so

in
,
s

ne
te

r.

-
tly

f

a
tion

e

tic
or

d,
iate

of
the
in

u-

ap-
yti-
and
-
t

are
ses

ge-

oly-
ing
the
whereN(x,t) is given by

N~x,t !5E E
0

2p

dudu8
1

~ t2cosu!~ t2cosu8!

3Q3S u2u8

2
,
ix~ t2cosu!~ t2cosu8!

4p~ t221! D .

~3.44!

The partition functionZ(x,t) of the polymer on the torus is

Z~x,t !5a2~ t221!3/2N~x,t !. ~3.45!

This reduces properly to the area 4p2ab of the torus when
x@1, t@1 @Q(z,t).1#:

Z~x,t !.4p2abA12
1

t2
.4p2ab. ~3.46!

Physically, for different values ofx and t, three regimes are
expected:

~a! Ll !a2,b2⇔ x

t2
,x!1, ~3.47a!

~b! a2!Ll !b2⇔ x

t2
!1!x, ~3.47b!

~c! a2,b2!Ll⇔1!
x

t2
,x, ~3.47c!

where in the first case we should recover the solution fo
polymer in the plane, in the second we must obtain the re
for a polymer on a cylinder, and in the third the mean squ
end-to-end distance should reach a constant value~corre-
sponding to a large winding number about both theOz axis
and the axial circle of radiusb).

These regimes are manifest in Fig. 4, where the results
the torus are plotted with thin lines, fort5$2,4,6,8,10%.

Initially @the first regime in Eq.~3.47!#, the polymer is too
small to explore the geometry of the surface, and we reco
~numerically! the case of a polymer in a plane. This is al
the behavior found for the other surfaces.

As the length of the chain increases, it starts wind
along the circle of radiusa and then along the axial circle
about the Oz axis. When t increases, the behavior i
similar—for a certain range ofx values—to that of a chain
on a cylinder: The mean-square end-to-end distance is li
in Ll /2. We can check analytically that the approxima
a
lt
e

or

er

g

ar

propagator from Eq.~3.36! produces the correct behavio
Becausea2!Ll !b2, the termn50 dominates in the theta
function in Eq.~3.43! @Q3(z,t)'1# and the exponential co
efficient of 12t2 can be expanded; so one obtains explici

^~R2R8!2&.2a21
Ll

2
~a2!Ll !b2!, ~3.48!

which is just the limit for the polymer on the cylinder o
radiusa from Eq. ~3.15!.

Eventually, at any given t and large enoughx,
^(R2R8)2& departs from the behavior of a polymer on
cylinder and approaches a constant value, which is a func
only of the geometrical parametersa and b. This limiting
value can be explicitly calculated. Now we hav
a2,b2!Ll ; thus once againQ3(z,t)'1 but the exponen-
tial coefficient of 12t2 in the formula for distance~3.43! is
zero, which gives the limit

^~R2R8!2&'2~a21b2! ~a2,b2!Ll !. ~3.49!

If either a or b radii becomes 0, one recovers the asympto
limits of the end-to-end distance for a polymer on a circle
on a sphere, respectively, as found in Eq.~3.9!.

Although the asymptotic behavior is correctly recovere
we expect our results in the crossover region of intermed
values oft andx to be only approximate.

IV. CONCLUSIONS

Because of its relevance to studies of the behavior
polymers confined at interfaces, we have considered here
problem of a linear, Gaussian polymer chain embedded
the following surfaces: theSD21 spherein D dimensions, the
cylinder, theconeand thecurved torusin R3.

We obtained closed formulas for the probability distrib
tion function G(RuR8;L) of the end-to-end vector of the
chain for the sphere, the cylinder and the cone and an
proximate propagator for the torus. We calculated, anal
cally in the case of the sphere, the cylinder and the cone,
numerically for the torus, themean-square end-to-end dis
tance~in the embedding space! of the chain. As such, at leas
in the limiting regimes previously described, the results
also valid for a free quantum particle on a torus if one u
the mapping$L→t2t8,2/l→m/ i\ % ~wheret and t8 repre-
sent the final and initial time coordinates of the particle!.

Our calculations demonstrate the role played by the
ometry ~curvatureandshape! of the interface in controlling
the size of the chain.

As the size of the confining surface decreases, the p
mer size is determined by the parameters of the confin
surface instead of chain length. The crossover between



ed

n

tio
th
le
c
h
Th

re
n

Fo
E
ll

al-

ce

ts
me,
ress

m
eer-
SF
E.

57 4419BROWNIAN MOTION AND POLYMER STATISTICS ON . . .
free Gaussian chain limit and the confined limit is controll
by a characteristic geometrical localization areaA. A is pro-
portional toa2 for the cases of spheres and cylinders, a
there are two characteristic areas proportional toa2 and b2

for the case of curved torus. For the cone, the localiza
area is variable and is determined by the position of
singular point~the vertex! about the chain and by the ang
a. Explicit closed formulas are derived for the dependen
of the mean-square end-to-end distance of a Gaussian c
on the geometrical parameters of the confining surface.
formulas for spheres and cylinders are simple@Eqs.~3.9! and
~3.15!#, describing the crossover between free polymer
gime and confined polymer regime. For the case of a co
the final expression is more complicated, but still exact.
a torus, there are three asymptotic regimes as outlined by
~3.47!, and the crossover behavior is obtained numerica
from Eq. ~3.43!.
.
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A number of open problems come into attention: the c
culation of the mean-squaregeodesicend-to-end distance~as
measured on the surface and not in the embedding spa!,
the statistics of the winding numbers~mainly for the polymer
on the torus case!, the influence of the topological defec
existing on the surface, the presence of excluded volu
and other types of potential interactions. We hope to add
some of these issues in the near future.
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